
Research Article
LETR: An End-to-End Detector of Reconstruction Area in Blades
Adaptive Machining with Transformer

Zikai Yin,1 Yongshou Liang ,1 Junxue Ren,1 Jungang An,2 and Famei He3

1Key Laboratory of High-Performance Manufacturing for Aero Engines, School of Mechanical Engineering,
Northwestern Polytechnical University, 127 West Youyi Road, Beilin District, Xi’an 710072, China
2Haimo Research Institution, 22 Technology of Fifth Road, High Technology District, Xi’an 710000, China
3Beijing Institute of Technology, No. 5, South Street, Zhongguancun, Haidian District, Beijing 100000, China

Correspondence should be addressed to Yongshou Liang; liangyongshou@nwpu.edu.cn

Received 23 September 2021; Accepted 8 April 2022; Published 14 May 2022

Academic Editor: Ehsan Namaziandost

Copyright © 2022 Zikai Yin et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In the leading/trailing edge’s adaptive machining of the near-net-shaped blade, a small portion of the theoretical part, called the
reconstruction area, is retained for securing aerodynamic performance by manual work. The next work is to recognize the
reconstruction area of the reconstructed leading/trailing edge’s image. To accelerate this process, an anchor-free neural
network model based on Transformer was proposed, named Leading/trailing Edge Transformer (LETR). LETR extracts image
features from an aspect of mixed frequency and channel domain. We also integrated LETR with the newest meta-Acon
activation function. We tested our model on the self-made dataset LDEG2021 on a single GPU and got an mAP of 91.9%,
which surpassed our baseline model, Deformable DETR, by 1.1%. Furthermore, we modified LETR’s convolution layer and
named the new model after Ghost Leading/trailing Edge Transformer (GLETR) as a lightweight model for real-time detection.
It is proved that GLETR has fewer weight parameters and converges faster than LETR with an acceptable decrease in mAP
(0.1%) by test results. The proposed models provide the basis for subsequent parameter extraction work in the reconstruction area.

1. Introduction

The near-net-shaped blades are applied to the blades of the
aero-engine as it fits the modern aero-engine performance
better. The blank material and typical structure of the
near-net-shaped blade are shown in Figures 1(a) and 1(b),
respectively. A section curve of the blade is presented in
Figure 2. The geometric parameters of the near-net-shaped
blade’s suction/pressure surface have met the designing
requirement after being forged, which means that it needs
no further machining, while the leading/trailing edge cannot
be forged precisely due to the sharply changing curvature.
On the other hand, although blank material is forged within
the design tolerances, complex deformation still occurs [1].
That means we cannot plan the tool path according to the
designed model. Hence, we need to reconstruct the theoret-

ical leading/trailing edge. In this case, adaptive machining
[2] is imported to the machining process of near-net-
shaped blades. Adaptive machining technology aims to
modify manufacturing data on the basis of changed condi-
tions. In our previous manual work, we retained a part of
the theoretical leading/trailing edge and bridged it with
blank material considering the design intent and aerody-
namic performance. The reconstructed blade’s section
curves are shown in Figure 3. This process, however, is
time-consuming and depends on the human experience.
Deep learning has a cutting-edge advantage in improving
efficiency and avoiding human error, based on which we
proposed a model reconstruction framework in [3].

Unlike traditional reconstruction methods based on geo-
metric prediction, we reconstructed models based on the
accomplished reconstruction stored in images. Our method

Hindawi
Journal of Sensors
Volume 2022, Article ID 3005684, 19 pages
https://doi.org/10.1155/2022/3005684

https://orcid.org/0000-0001-7445-9269
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/3005684


can be described in the following steps. In the first stage, we
use Generative Adversarial Networks (GAN) [4] to classify
optimal reconstructed leading/trailing edge’s images based
on our previous manual works [3]. However, the recon-
structed curves in images cannot be adopted in computer-
aided design (CAD) software for model reconstruction
directly. So, we need to detect the retained part and bridged
curves of these reconstructed curves on the next step.
Thirdly, we will extract parameter information from them.
As long as these parameters are obtained, we can utilize
CAD software to adjust the theoretical leading/trailing edge
and reconstruct it automatically to realize the adaptive
machining of the near-net-shaped blade. This paper’s main
focus is to detect the retained part of the theoretical lead-
ing/trailing edge, and we use the item “reconstruction area”
to represent it.

A small object usually contains a small quantity of
semantic information due to its small size. As shown in
Figure 3, in comparison with the general object detection
task, there is no complex feature in the leading/trailing
edge’s image. Moreover, the leading/trailing edge’s image
contains less semantic information, and the background is
relatively simple. For this reason, the leading/trailing edge’s
reconstruction area detection is defined as a small object

detection task in this paper, and the reconstruction area is
approximated by the area of the bounding box.

The performance of object detection has improved sig-
nificantly with the help of convolutional neural networks
(CNNs) [5], which detect objects by extracting features
from considerable data. Generally speaking, object detec-
tion algorithms employing CNNs are divided into two-
stage methods and one-stage methods according to their
processing stages. A typical method of two-stage is the
Regions with CNN features (R-CNN) series [6–8], which
imports the selective search algorithm to predict the region
of interest. Unlike two-stage methods, one-stage methods
predict bounding boxes and classes in a single neural net-
work. Symptomatic one-stage methods include You Only
Look Once (YOLO) series [9–12] and Single-Shot Multibox
Detector (SSD) [13].

The methods mentioned above have three points to be
further ameliorated. First, the anchor box size needs to be
manually designed for different detection tasks, which takes
a great amount of time. Furthermore, the sizes of ground-
truth bounding boxes of small objects are relatively small,
which may lead to the class imbalance problem [14]. More-
over, the nonmaximum suppression (NMS) algorithm is not
sensitive to small objects which contain less semantic

Convex surface

Concave surface

(a) The blank to be formed

Leading edgeTrailing edge

(b) The near-net-shaped blade

Figure 1: The typical structure of near-net-shaped blade.

Leading edge Trailing edge

Concave surface

Convex surface Medium arc line

Figure 2: A section line of the near-net-shaped blade.

2 Journal of Sensors



information. The number of the network’s predictions is
much larger than that of the actual objects’ number, and
NMS is employed here to remove superfluous predicted
bounding boxes. The NMS algorithm sets a threshold value
and deletes all bounding boxes higher than the threshold
value and keeps the bounding box with the highest score.
The postprocess of NMS during the small object detection
is often obstructed by background, and small targets are eas-
ily covered by objects of medium and large sizes.

Considering the variable shape of the leading/trailing
edge, we decided to take an anchor-free model as our lead-
ing/trailing edge detector, which abandons anchors and the
postprocessing of the NMS algorithm. In recent years,
Transformer has shown its superiority in the object detec-
tion field due to its capacity for spatial relation modeling
of targets. The model that works best now with Transformer
is Deformable DETR (Deformable Detection Transformer)
[15]. Nevertheless, Deformable DETR has its issues. Firstly,
Deformable DETR extracts features from input images based
on the spatial attention mechanism. That means some valu-
able information is abandoned during this process. Its accu-
racy, therefore, remains a huge space to be promoted. Then,

despite that Deformable DETR has achieved prominent
results, it still needs to be further compressed to meet the
requirement of real-time detection. Focusing on these two
abovementioned problems, the main works of this study
are summarized below:

(1) We proposed an anchor-free model named Leading/
trailing Edge Detection Transformer (LETR). LETR
extracts features of reconstruction areas from the
frequency-channel mixed domain. Besides, LETR
activates nonlinear units dynamically in view of the
simplex background of our dataset

(2) To balance model weight and performance, we
introduced a lightweight model by modifying LETR
for real-time detection. Technically, the specific con-
volutional layers of LETR are replaced by lightweight
modules. The model is called Ghost Leading/trailing
Edge Detection Transformer (GLETR).

(3) We tested LETR and GLETR on the self-made data-
set LDEG2021. It is proved that LETR has state-of-
the-art performance on detecting reconstruction

Reconstruction area

Blank matetrial

Theoretical leading edge

Reconstructed leading edge

(a) Leading edge’s reconstruction area

Reconstruction area

Blank matetrial

Theoretical trailing edge

Reconstructed trailing edge

(b) Trailing edge’s reconstruction area

Figure 3: The reconstruction area of a blade.

3Journal of Sensors



areas. Moreover, GELTR has significantly fewer
parameters and converges faster than LETR in the
training process

The rest of this paper is structured as follows. Section 2
illustrates the recent works on the reconstruction of edge
shape in adaptive machining and object detection. Section 3
reviews the attention mechanism in computer vision. Our
proposed models are presented in Section 4. Section 5 reports
the experimental results on the self-made dataset. Section 6
gives the conclusions and future works. The code will be avail-
able at https://github.com/andrewsilver1997/LETR.

2. Related Works

Our research is the combination of adaptive machining and
computer vision algorithms. In this section, we will discuss
the related works from the aspects of edge shape reconstruc-
tion, small object detection, self-attention mechanism, acti-
vation function, and efficient networks.

2.1. Reconstruction of Edge Shape. The prevalent model
reconstruction methods can be concluded in three aspects:
by fitting curves of measured data, predicting the deforma-
tion of the blade’s surface, and predicting design intent. Our
reconstruction work is mainly based on design intent and
deformation of blank material. A model similar to the orig-
inal counterpart is constructed according to the existing
data in the reconstruction of the edge shape procedure.
Some representative research is illustrated as follows. Yun
et al. [16] imported parameterization design to Free-Form
Deformation (FFD) and realized the model reconstruction
based on measure data. Zhao et al. [17] improved the accu-
racy of reconstruction by inserting knots. Feng et al. [2] pre-
dicted the desired spline curves considering the deformation
and thickness of the blank material while preserving the
design intent. Yu et al. [18] established the relationship
between measured points and the velocity field of the
blade’s section. Further, they calculated the curves in the
area without measuring data. Zhang et al. [19] considered
the constraints of the chord length, angle of attack, and
radius during the reconstruction process. Wu et al. [20]
proposed a novel reconstruction algorithm by removing
bad measure points and optimizing the iterative closest
point (ICP) algorithm. Nevertheless, the current research
on the modeling of large curvature inexact forming regions
mainly focuses on simple geometric element fitting but does
not fully consider the relationship between the design inten-
tion of the blade, the similarity relationship between the
actual blade surface and theoretical surface, and the com-
plex deformation of blank materials. Our previous manual
works addressed the aforementioned issue to a certain
extent [3]. For this article, we further proposed an algo-
rithm based on deep learning to accelerate this process
and reduce errors caused by human experiences.

2.2. Small Object Detection. It is usually a small part of the
theoretical model and has less semantic information in an
image. Hence, the detection of the reconstruction area can

be seen as a small object detection task. Some models based
on the two-stage method were proposed to detect small
objects. Based on Faster R-CNN [7], Singh and Davis [21]
proposed Scale Normalization for Image Pyramids (SNIP)
for small object detection. Furtherly, they modified SNIP
and proposed SNIPER [22] for efficient and fast detection.
Zhang et al. [23] utilized a multiscale feature fusion layer
(MFL), and a certain extent of improvement was obtained.
On the other hand, a typical one-stage detector is RetinaNet
[14], which uses focal loss and feature pyramid maps [24] to
detect small objects. Based on YOLO v2, the work of Liu
et al. [25] can detect arbitrary-oriented targets of small sizes.

Some researchers proposed anchor-free methods. The
representative works include CornerNet [26], ExtremeNet
[27], and CenterNets [28, 29]. These models detect objects
by implementing keypoint estimation. Some novel works
aiming to solve the problems of the traditional NMS algo-
rithms were published. Dong et al. [30] integrated transfer
learning with faster RCNN for annotation and improved
accuracy. Cai and Vasconcelos [31] proposed cascade
RCNN. Cascade RCNN connects a sequence of detectors
and adapts threshold in NMS processing to avoid the mis-
match between predicted bounding boxes and ground-
truth objects. Our models discard anchor boxes and NMS
postprocessing. Experiments verified that our models domi-
nate in existed models without the help of the anchor box
and NMS algorithm.

2.3. The Self-Attention Mechanism in Computer Vision. In
recent years, the progress of natural language processing
[32] (NLP) has led researchers to investigate its application
in computer vision. Vaswani et al. [33] introduced Trans-
former in NLP for the first time. The Transformer achieves
impressive results on sequence prediction. Carion et al. [34]
modified the Transformer and named their model as Detec-
tion Transformer (DETR). The DETR model abandons
anchor boxes and NMS’s implementation. However, DETR
has a low speed of convergence and does not perform well
on small object detection tasks. Sun et al. [35] argued the
cross-attention module of DETR is not necessary and pro-
posed two models named Transformer-based Set Prediction
with FCOS [36] (TSP-FCOS) and Transformer-based Set
Prediction with R-CNN (TSP-RCNN), respectively. Zhu
et al. [15] imported deformable convolution [37] to DETR
and proposed Deformable DETR. Deformable DETR deals
with input feature maps from the spatial domain. In this
study, we tried to extract features from a different aspect,
that is, the mixed domain of frequency and channel.

2.4. Activation Functions. Some researchers attempted to
modify the activation function in networks and gained
improvements to a certain extent. The most-used activation
function is Rectified Linear Unit (ReLU) [38] which acti-
vates the neurons linearly when the input is bigger than
zero. Its variant, Leaky ReLU [39], activates the neurons
when the input is nonzero. The ReLU-based activation func-
tions are too simple to be implemented on complicated
visual tasks as some features may be missed. Sigmoid-

4 Journal of Sensors

https://github.com/andrewsilver1997/LETR


weighted Linear Unit (SiLU) [40] combines ReLU and sig-
moid function together. Compared with ReLU, it is smooth
and nonmonotonic. [41] applied automatic search to a vari-
ety of activation functions and found a better function
named Swish. But it also brings huge computation resource
consumption. [42] imported spatial context to the activation
function and gained state-of-the-art performance on dense
visual tasks. A recent work is called Dynamic Rectified Lin-
ear Unit (DY-ReLU) [43] adapts the parameters dynami-
cally by a hyperfunction. When implemented on deep
neuron networks, however, the abovementioned activation
functions’ effects become weaker. Unlike previous activation
functions, Activate or Not functions (Acon) [44] learn
whether to activate the specific neurons and convert models
into dynamic networks, which brings better performance as
networks go deeper.

2.5. Efficient Networks. For deploying object detection
models on mobile devices, some operations for light-
weighting are inevitable to save computational cost and
memory. There are two types of strategies for efficient
networks. One is to compress the model by pruning redun-
dant connections [45] and channels [46], quantization [47],
and knowledge distillation [48]. Such model compression
methods usually require well-designed architecture and pre-
trained models. The other strategy is to design a lightweight
model directly [49]. Some typical lightweight models are
proposed by researchers. Xception [50] introduced depth-
wise separable convolution modules and realized better per-
formance with fewer model parameters. MobileNet series
[51–53], for example, are based on depth-wise and point-
wise separable convolutions as well as automated machine
learning (AutoML) technologies [54]. Other famous light-
weighted models are ShuffleNet [55, 56] series, which
exchange their inner channel information to reduce compu-
tational cost. The redundancy of feature maps has not been
solved well. GhostNet [49], on the contrary, utilizes these
redundant feature maps and has more excellent perfor-
mance compared with previous lightweight models. We
integrated our LETR with GhostNet and presented GLETR.
More details of GLETR are seen in Section 4.

3. Revisiting Deformable Attention

3.1. Self-Attention Mechanism. DETR is a successful object
detection model using the self-attention mechanism, achiev-
ing outstanding performance on the COCO dataset [57]. In
this part, we briefly reviewed the inner mechanism of DETR.

3.1.1. Multihead Attention. In the natural language process-
ing field, the self-attention mechanism was adopted in the
Transformer model. By computing the values of Query,
Key and Value of input images, the Transformer modulates
the compatibility of every pixel. In the multihead attention
mechanism, the outputs of several attention heads are aggre-
gated linearly with learnable weight parameters. Given the
Value’s input feature zq and the Query and Key’s input fea-

ture x ∈HW × C, where H, W, and C are the heights,
widths, and channels of input images, the formulation of
multihead attention is shown as:

MultiHeadAttn zq, x
� �

= 〠
M

m=1
Wm 〠

k∈Ωk

Amqk ·Wm′ xk

" #
: ð1Þ

In Equation (1), q ∈Ωq and k ∈Ωk are elements of Query
and Key set, m is the number of attention heads, Amqk ∝
exp fzTq UT

mV
T
mxk/

ffiffiffiffiffi
Cv

p g is attention weight, where Um and
Vm are the transformation matrices of Query, Key, respec-
tively, and Cv = C/M. Wm and Wm′ are transformation
matrices of Value. Please note that Um, Vm, Wm, and Wm′
’s parameters are all learnable.

3.1.2. Position Embedding. DETR adopts position embed-
ding to our extracted features. This is owing to that the
Transformer demands information about the relative or
absolute position of pixels in feature maps. In DETR, sine
and cosine functions are used to represent the positions of
different pixels. The position embedding equations are writ-
ten as:

PE pos, 2ið Þ = sin
pos

100002i/dmodel

� �
,

PE pos, 2i + 1ð Þ = cos
pos

100002i/dmodel

� �
,

ð2Þ

where pos denotes the position and i is the dimension index;
dmodel represents the channel dimension of the input
features.

3.1.3. Match Loss. Unlike previous object detection models
using NMS, DETR outputs fixed N predictions and N is
much larger than the number of objects in an image. DETR
needs to allocate predictions to objects in images, and match
loss is introduced to evaluate this process. Assuming that yi
is the set of ground-truth bounding boxes, yσðiÞ is a set of
predicted bounding boxes with index σðiÞ, the optimal per-
mutation σ is written as:

σ = arg min
σ∈PN

〠
N

i

Lmatch yi, yσ ið Þ
� �

, ð3Þ

where σ stands for a permutation of predicted objects.
Finally, the match loss Lmatch is defined as:

Lmatch = 〠
N

i=1
−log Pσ ið Þ + Lbox bi, b̂i

� �h i
: ð4Þ

Albeit the fact that DETR has achieved state-of-the-art
performance, it costs massive computational resources,
and its convergence speed is relatively low. Furthermore,
the performance of DETR on small target datasets is

5Journal of Sensors



disappointing. Besides, the test results of DETR present no
outstanding performance on our detection task. Hence, it
is proved that DETR is not suitable for our detection task.

3.2. Deformable Attention. DETR did not perform well on
small target detection tasks, owing to its inner mechanism.
Zhu et al. [15] combined DETR with deformable convolu-
tion and named their model Deformable DETR, by which
self-attention is generated to image deformable attention in
the image domain. The feature of the deformable attention
is computed by:

DeformAttn zq, pq, x
� �

= 〠
M

m=1
Wm 〠

K

k=1
Amqk ·Wm′ x pq + Δpmqk

� �" #
:

ð5Þ

k indicates the sampled keys, and K means the number
of sampled keys. pq denotes the reference point, and Δpmqk

is sampling offset.
In small object detection tasks, the sizes of objects vary

from small size to large size. To adapt the multiscale size
of input features, the deformable attention generates to
multiscale deformable attention and can be calculated by:

MSDeformAttn zq, p̂q, x
l
			L
l=1

� �
= 〠

M

m=1
Wm 〠

L

l=1
〠
K

k=1
Amlpk ·Wm′ xl ϕq

� �
+ Δpmlqk

� �" #
,

ð6Þ

where p̂q is the coordinates of sampled points being normal-
ized, l indexes the level of input feature maps. Amlqk and Δ

pmlqk represent the attention weight and offset of sampling

for the lth input feature map, respectively. ϕlðpqÞ function

rescales pq according to the lth input feature map.
Deformable DETR speeds up its convergence and

makes progress on small targets datasets. For our lead-
ing/trailing edge’s reconstruction area detection task, how-
ever, Deformable DETR’s performance can be further
improved compared with previous detectors using anchor
box and NMS.

4. LETR and GLETR

4.1. Overview of LETR. As shown in Figure 4, our model
adopted state-of-the-art methods implemented in small
object detection. A frequency-channel mixed backbone (we
named it after FcaAconNet) extracts features using a pyra-
mid neck. And then the pyramid-shaped feature maps are
sent to the Deformable Transformer head for encoding
and decoding. A feed-forward network is configured to out-
put the predicted classes and locations. We adapted the con-
figurations of the deformable encoder, deformable decoder,
and prediction network in [15].

4.2. Feature Extraction. Technically, the backbone is respon-
sible for extracting feature maps over input images. Previous

2.Backbone 3.Neck

Deformable
encoder

Deformable
decoder

4.Head 5.Prediction network 6.Output1.Input

Figure 4: Overview of LETR.

Scale

DCT0 DCT1 DCT2 DCTn–1

FC

Freq0 Freq1 Freq2 Freqn–1

Figure 5: The feature extraction process of the multispectral channel attention module.

6 Journal of Sensors



neural network models output a single-scale feature map.
However, the reconstruction areas in our dataset vary in dif-
ferent sizes. Hence, we adopted the pyramid architecture in
Deformable DETR for multiscale object detection. Further-
more, inspired by FcaNet [58], we imported the multispec-
tral channel attention module of FcaNet to the feature
extraction process of the model’s backbone. The details of
the utilized module are demonstrated in Figure 5.

Assuming that the dimension of the input feature is
C ×H ×W, the multispectral channel attention module
transforms input features into frequency domain with the

help of 2-dimensional discrete cosine transformation (2D
DCT). 2D DCT is formulated by Equation (7):

2DDCT x2d
� �

= 〠
H−1

i=0
〠
W−1

j=0
x2di,j cos

πh
H

i +
1
2

� �� �
cos

πw
W

j +
1
2

� �� �
,

ð7Þ

where x2d is the input image, and h ∈ ½0, 1,⋯,H − 1�,
w ∈ ½0, 1,⋯,W − 1�.

Input

Conv

Output

(a) The convolution operation

Input Intrinsic feature maps

Conv

Linear operation

Output

(b) The processing of ghost module

Conv

Conv

BatchNorm+ReLU

BatchNorm+ReLU

(c) The inner connection of the ghost module

Figure 6: The ghost module in Ghost-FcaAconNet.

7Journal of Sensors



In FcaAconNet, the feature extraction procedure is illus-
trated as follows. First, input features X are split into n parts
according to the channel. This process can be denoted as:

X = X0, X1,⋯,Xn−1
 �
: ð8Þ

Next, the ith frequency feature of a given input Xi is com-
puted by the following formulation. 2DDCT is represented
for 2D DCT operation.

Freqi = 2DDCT Xi� �
: ð9Þ

Thus, by concatenating all Freqi, we have the final fre-
quency feature Freq of the input feature:

Freq = cat Freq0, Freq1,⋯,Freqn−1

 �� �

: ð10Þ

And finally, the attention of the mixed frequency-
channel domain is computed by the following formulation:

MSAttn = sigmoid fc Freqð Þð Þ, ð11Þ

where sigmoid is sigmoid function and f cð·Þ is a fully con-
nected layer. By rescaling X with MSAttn, the output of

Reconstruction area
Bridging curve

Bridging curve

(a) Leading edge

Reconstruction area

Bridging curve

Bridging curve
Concave surface 

Convex surface 

(b) Trailing edge

Figure 7: Selected samples in LDEG2021.

8 Journal of Sensors



multispectral channel attention module, denoted as ~X, is
computed as:

~X = Fscale X, MSAttnð Þ =MSAttn × X: ð12Þ

The mixed frequency and channel weights are applied to
the input feature maps after the multispectral channel atten-
tion module. In this method, adequate frequency and chan-
nel information is utilized by our backbone, and the
accuracy is enhanced gradually in deep neural networks.

4.3. Activation Function. In the neural network’s architec-
ture, the activation function plays a key role in importing

nonlinearity to improve the model’s classification capability.
Considering the big difference between the foreground and
background of our task, we employed Acon functions
because of their excellent ability to control the extent of

(a) (b)

(c) (d)

(e) (f)

Figure 8: Examples of LDEG2021 dataset.

Table 1: Confusion matrix.

Ground-truth
Prediction

Positive Negative

Positive TP FN

Negative FP TN

9Journal of Sensors



nonlinear activation. In other words, by learning whether to
activate and to what extent the input is activated, the model
filters some disturbing information. More concretely, Acon
functions are divided into three types: Acon-A, Acon-B,
and Acon-C. Acon-A and Acon-B can be seen as special
cases of Acon-C. According to Ma et al. [44], meta-Acon,
the variant of Acon-C, showed the best performance in the
test. Therefore, we adopted it as our activation function.
Here, we gave the definition of Acon-C and meta-Acon.

Firstly, we use a function sβ to approximate the general
maximum function max ðx1, x2,⋯,xnÞ:

sβ x1, x2,⋯,xnð Þ = ∑n
i=1xie

βxi

∑n
i=1e

βxi
, ð13Þ

where β is the switching factor. Next, we consider the situa-
tion where sβðx1, x2,⋯,xnÞ is in neural networks. In this case,
sβðx1, x2,⋯,xnÞ degenerizes to the following format:

sβ ηa xð Þ, ηb xð Þð Þ = ηa xð Þ − ηb xð Þð Þ · σ βηa xð Þ − ηb xð Þ½ � + ηb xð Þ:
ð14Þ

σ is the sigmoid function, ηaðxÞ and ηbðxÞ represent lin-
ear functions. Considering a more general situation where
ηaðxÞ = p1x and ηbðxÞ = p2x, Acon-C is written as:

Acon − C xð Þ = sβ p1x, p2xð Þ = p1 − p2ð Þx · σ β p1 − p2ð Þx½ � + p2x:

ð15Þ

And furtherly, we see β as a learnable network GðxÞ and
Acon − CðxÞ can be generated to meta −AconðxÞ, which is
computed as:

meta −Acon xð Þ = p1 − p2ð Þx · σ G xð Þ p1 − p2ð Þ½ � + p2x: ð16Þ

We replaced the first two ReLU functions with meta-
Acon in each bottleneck of the original FcaNet to avoid
overfitting and proposed FcaAconNet. Relative experiments
are seen in Section 4.

As Figure 6(a) shows, convolution operation generates a
great amount of output feature maps which contains a cer-
tain extent of redundancy. Han et al. proved that some sim-
ilar feature maps exist in this redundancy and argued that
these superfluous feature maps are the ghost of intrinsic

1

1

0.8

0.8

0.6

0.6

Recall

Pr
ec

isi
on

0.4

0.4

0.2

0.2
0

0

(a) Comparisons of PRCs on leading edges

1

1

0.8

0.8

0.6

0.6

Recall

Deformable DETR-ResNet50
Deformable DETR-ResNet101

LETR
GLETR

Pr
ec

isi
on

0.4

0.4

0.2

0.2
0

0

(b) Comparisons of PRCs on trailing edges

Figure 9: Comparison of PRCs.

10 Journal of Sensors



feature maps. Thus, they generated intrinsic feature maps by
a primary convolution and obtains ghost features through a
linear operation, by which the complexity of the model is
reduced. The whole procedure is described as follows.

4.4. Ghost Module. If we use X to represent the input feature
map, the output Y after general convolution is defined by:

Y = X ∗ f + b, ð17Þ

where ∗ and b denote the convolution operation and bias,
respectively, and f is the convolution operator. In ghost
module’s first stage, however, f is replaced by a new operator
f ′ and bias is canceled for lower model complexity. Thus,
the output Y ′ of the ghost module’s first stage is denoted as:

Y ′ = X ∗ f ′: ð18Þ

In the second stage, the ghost module implements a
series of linear operations to output Y ′ to match the dimen-

sion of the channel of the original output Y . The linear oper-
ations in the ghost module are written as:

yi,j = ϕi,j yi′
� �

, ð19Þ

where yi′ is the ith intrinsic feature map, Φi,j represents the i
th

linear operation, and yi,j is the generated ghost feature map.
The details of the ghost module are depicted in

Figure 6(b). Some intrinsic feature maps are output by the
previous convolution layer in the first stage. Next, by linear
operation, we mentioned above, a large number of ghost fea-
ture maps are produced. Finally, the intrinsic feature maps
and their corresponding “ghost” are concatenated according
to the channel dimension. In practice, the inner connection
of the ghost module is shown in Figure 6(c). The linear oper-
ation is carried out by a convolution layer. Technically, we
replaced all convolution layers with ghost modules in FcaA-
conNet’s bottleneck, and we called the FcaAconNet back-
bone with ghost module Ghost-FcaAconNet.

100

90

80

70

60

50

40

30

20

10

10 20 30 40 50 60 70 80

91.9%91.8%
90.8%

90 100

Epoch

Deformable DETR-ResNet50
Deformable DETR-ResNet101

LETR
GLETR

m
A

P 
(%

)

0
0

9 .8%
90.8%

Figure 10: Convergence curves of three models on LDEG2021.

Table 2: Comparison of LETR and GLETR with Deformable DETR on the LDEG2021 test set.

Detector Backbone mAP Model weight Training hours

Deformable DETR ResNet-50 90.6% 491.2MB 3.5

ResNet-101 90.8% 718.9MB 3.5

LETR FcaAconNet 91.9% 545.6MB 8.5

GLETR Ghost-FcaAconNet 91.8% 424.4MB 3.5

11Journal of Sensors



5. Experiments

5.1. Dataset. We made LDEG2021 to detect the reconstruc-
tion area of the leading and trailing edge. The whole images
of LDEG2021 are the multiple sizes of section curves of dif-
ferent reconstruction areas of the leading and trailing edges
of the different blades’ different heights. These images are
acquired from the screenshots of Unigraphics NX 7.5 (UG)
software. LDEG2021 has 397 images annotated with two
classes: leading edge and trailing edge. Two selected samples
and their corresponding captions in LDEG2021 are shown
in Figure 7. We used different colors to distinguish different
curves. The magenta curves in Figures 7(a) and 7(b) are the
bridge curves of reconstructed leading/trailing edges. And
the crimson curves indicate the reconstruction areas of lead-
ing edges. On the other hand, the plum curves are the recon-
struction areas of trailing edges. The section lines of convex
and concave faces are presented in purple and yellow.

The reconstruction areas vary in different sizes. So, we
applied scaling and rotation to the models of reconstruc-
tion areas. In this way, some screenshots of reconstruction
areas are no longer in actual sizes. We need to notice that
this process is to train the ability to detect shape-varied

reconstruction areas. In Figure 8, we also gave other exam-
ples of the LDEG2021 dataset. Figures 8(a)–8(c) present
the images of reconstructed leading edges. Figures 8(d)–
8(f) are the images of reconstructed trailing edges. In this
article, we aim to train a high-performance model which
can detect a certain number of reconstruction areas at
the same time. That explains why there are more than
one leading/trailing edge in an image. It is also worth not-
ing that some overlapping phenomena occurred in
Figures 8(b) and 8(e). This is due to the fact that these
images are obtained from different perspectives in UG.
The LDEG2021 dataset will be open-sourced on https://
github.com/andrewsilver1997/LDEG2021.

5.2. Data Augmentation. Generally, a neural network model
gets better performance when the dataset’s scale gets larger.
The number of images in LDED2021, nevertheless, is lim-
ited. The data augmentation methods we applied include
random flipping, random cropping, and resizing. The train-
ing procedure was carried out on a CPU of Intel Xeon E5-
2678 V3 and a single GPU of Nvidia RTX 2080Ti. We used
MMDetection object detection toolbox [59] with Pytorch
1.5.1, cuDNN 7.6.1, and CUDA 10.1 for implementation.

1

1

0.8

0.8

0.6

0.6

Recall

Pr
ec

isi
on

0.4

0.4

0.2

0.2
0

0

(a) PRCs of the models with different components on the leading edges

1

1

0.8

0.8

0.6

0.6

Recall

Deformable DETR
+FcaNet

++MetaAcon
+++Ghost module

Pr
ec

isi
on

0.4

0.4

0.2

0.2
0

0

(b) PRCs of the models with different components on the trailing edges

Figure 11: PRCs of the models with different components.

12 Journal of Sensors

https://github.com/andrewsilver1997/LDEG2021
https://github.com/andrewsilver1997/LDEG2021


The batch size and learning rate were set to 2 and 2 × 10−4 at
first, respectively. The learning rate was decreased to
2 × 10−5 after 40 training epochs. Moreover, we chose
adamW as our optimizer.

5.3. Results and Discussions

5.3.1. Evaluation Metrics. True positive (TP), false positive
(FP), false negative (FN), and true negative (TN) are usually
needed in the evaluation of a model’s performance. Table 1
shows their definition by giving a confusion matrix.

We utilized the precision-recall curve (PRC) and mAP
(mean average precision) to evaluate the proposed approach’s
performance. Firstly, we give the definition of precision and
recall:

Precision =
TP

TP + FP
,

Recall =
TP

TP + FN
:

ð20Þ

Generally speaking, a good object detection model is sup-
posed to raise its precision and keep the recall at a relatively
high level.

AP (average precision) represents the performance that
the model detects a specific class of all objects. AP is
defined in

AP =
ð1
0
p rð Þsdr, ð21Þ

where p and r are short for precision and recall. mAP
(mean average precision) is defined as the average of all
classes’ AP. It is calculated by

mAP =
∑N

i=1APi

N
, ð22Þ

where APi is the AP value of the ith class and N indicates
the total number of all classes. mAP measures the overall
performance of the model. In other words, the higher
the mAP is, the higher accuracy our models have. The
other metrics we implemented are model weight and
training hour, which measure the number of weight
parameters and convergence speed.

5.3.2. Results on LDEG2021 Dataset. Figures 9(a) and 9(b)
show the PRC curves of Deformable DETRs with ResNet50
and ResNet101 backbone, LETR, and GLETR. The perfor-
mances of the Deformable DETRs with ResNet50 and
ResNet101 were nearly the same when detecting the recon-
struction areas of the leading edge. Maintaining the same

100

90

80

70

60

50

40

30

20

10

10 20 30 40 50 60 70 80

91.9%91.8% 91.2%

90.6%

90 100

Epoch

m
A

P 
(%

)

0
0

Deformable DETR
+FcaNet

++MetaAcon
+++Ghost module

91.8%

90.6%

Figure 12: Convergence curves of the models with different components.

Table 3: Ablation studies for FcaNet, meta-Acon, and ghost
module.

ResNet FcaNet
Meta-
Acon

Ghost
module

mAP
Model
weight

Training
hour

✓ 90.6% 491.2MB 3.5

✓ 91.2% 543MB 3.5

✓ ✓ 91.9% 545.6MB 8.5

✓ ✓ ✓ 91.8% 424.4MB 3.5

13Journal of Sensors



recall, the precision values of LETR and GLETR were higher
than Deformable DETRs. The enhancement of the perfor-
mance when detecting the trailing edge’ reconstruction area
was unobvious as shown in Figure 9(b). It is worth noting
that the shapes of trailing edge’s reconstruction areas have
no such big differences as leading edge’s reconstruction areas
do. Besides, the retained theoretical parts of the trailing
edge’s reconstruction areas are relatively larger than that of
the leading edge’s reconstruction areas. That explains why
the improvement in Figure 9(b) is not obvious. But even
though the improvement in Figure 9(b) is not distinct, LETR

and GLETR still show their comparable performance. We
will give a more detailed illustration in the following discus-
sions of detection results. The convergence curves of the
three models are presented in Figure 10. Deformable DETR
with ResNet50 backbone took 50 epochs to converge and the
mAP was 90.6%. The Deformable DETR with ResNet101
backbone did not show significant differences compared
with the Deformable DETR with ResNet50. On the other
hand, LETR, achieved a higher mAP even though its training
time was longer. GLETR had the fastest convergence speed
(less than 40 epochs) and the mAP was 91.8%.

(a) Raw image (b) Detection results of Deformable DETR

(c) Detection results of LETR (d) Detection results of GLETR

Figure 13: Selected examples from the detection results on trailing edges.

(a) Raw image (b) Detection results of Deformable DETR

(c) Detection results of LETR (d) Detection results of GLETR

Figure 14: Another examples from the detection results on trailing edges.

14 Journal of Sensors



Table 2 illustrates the results of the test. Compared
with Deformable DETR, LETR achieves better performance
with a 1.1% improvement of mAP. On the other hand,
GLETR decreased model weight by 121.2MB with a slight
decrease of mAP (0.1%). It is worth noting that the results
were obtained on a single GPU. We believe the improve-
ment in the performance of our models will be more pro-
nounced on multiple GPUs with higher computational
accuracy and speed.

Figures 11(a) and 11(b) show the effects of different
components on PRC curves. The symbol “+” indicates the

number of design components the model has. As
Figure 11(a) illustrates, the performances of models when
detecting the leading edge’s reconstruction areas were
enhanced by introducing the FcaNet and MetaAcon. The
imported components’ effects on detecting the reconstruc-
tion area of the trailing edge were unremarkable. Figure 12
is the convergence curves of the models with different com-
ponents. The training epochs of the Deformable DETR
whose backbone was replaced by FcaNet were the same as
Deformable DETR with ResNet with an increase of mAP.
After importing the MetaAcon function, the training epochs

(a) Raw image (b) Detection results of Deformable DETR

(c) Detection results of LETR (d) Detection results of GLETR

Figure 15: Comparison of detection results of the top area.

(a) Raw image (b) Detection results of Deformable DETR

(c) Detection results of LETR (d) Detection results of GLETR

Figure 16: Comparison of detection results of the middle area.

15Journal of Sensors



went to 92. The ghost modules lowered the training epochs
significantly to less than 40 and the decrease in mAP was
tolerable.

Table 3 presents ablations for three design components
of LETR. If we use ResNet as the backbone, LETR degener-
ates to Deformable DETR, and the mAP is 90.6%. Using
FcaNet instead of ResNet improves mAP by 0.6%. Next,
replacing ReLU with the meta-Acon activation function
can effectively improve mAP by 0.7%. By importing the
ghost module, the weight of LETR dropped to 424.4MB,
and the mAP of GLETR is 91.8%, which was lower than that
of LETR. This decrease is acceptable. More importantly, the
training hour is lowered by the ghost module from 8.5 hours
to 3.5 hours. Therefore, it is proved that GLETR performs as
good as LETR on the LDEG2021 dataset with fewer param-
eters and a faster speed of convergence, even though there
was a tiny decrease in mAP.

We need to point out that the edge shapes of recon-
structed leading/trailing edges are different. Moreover, the
reconstructed leading edges’ shapes vary from the bottom
to the top of the blade. In the rest part of this section, we will
discuss the performance of LETR and GLETR when detect-
ing the reconstruction areas of leading/trailing edges and the
reconstruction areas of leading edges from different heights
of the blade.

The detection results on different reconstructed trailing
edges are demonstrated in Figures 13 and 14. In Figure 13,
the baseline model, Deformable DETR, detected all targets
while some detected objects were misclassified. On the con-
trary, LETR detected all reconstruction areas of trailing edges
without any misclassification as shown in Figure 13(c). How-

ever, GLETR missed two targets even though the detected tar-
gets were correctly recognized.

We also showed an example in Figure 14 where Deform-
able DETR failed to detect all reconstruction areas of trailing
edges and recognized the wrong targets. By comparing
Figures 14(a) and 14(b), we knew that only one target was
detected successfully. It was unexpected that Deformable
DETR classified some interferences in the background as
reconstruction areas of trailing edges. Figures 14(c) and
14(d) give the detection results of LETR and GLETR on
reconstructed trailing edges.

To test LETR and GLETR’s performance in detecting the
reconstruction areas of leading edges of the near-net-shaped
blades, we picked raw images from the bottom, middle, and
top areas of the blade in LDEG2021 and tested three models
on them. The detection results on the top area’s images of
the blade are shown in Figure 14. The reconstructed curves
of the blade’s top area usually contain limited reconstruction
areas. That is, the targets are relatively smaller. Figure 15(a)
is the raw image of this area’s reconstructed curves. As
Figures 15(b)–15(d) show, Deformable DETR did not per-
form well while LETR and GLETR recognized these small
reconstruction areas with high probability. LETR and
GLETR detected all four targets with no mistakes.

As for the middle area of the blade, the reconstructed
curves of this area retained more reconstruction areas, as
shown in Figure 16(a). The detection results of the middle
area of the blade are given in Figures 16(b)–16(d). All three
models performed well with no reconstruction area missed.

The detection results of the bottom area of the blade are
seen in Figure 17. Figure 17(a) indicates that the cross

(a) Raw image (b) Detection results of Deformable DETR

(c) Detection results of LETR (d) Detection results of GLETR

Figure 17: Comparison of detection results of the bottom area.

16 Journal of Sensors



sections to be further machined in this area are quite dense,
which means that the reconstruction areas may be obscured
by each other. The test results in Figures 17(b) and 17(c)
illustrate that Deformable DETR missed two targets whilst
LETR missed only one target. However, GLETR did not
behave well, which disregarded five small reconstruction
areas in this area.

From Figures 13–17, it also can be summarized that the
classification probability of LETR is higher than that of
Deformable DETR in most cases. On the anther hand, the
classification probability of GLETR is lower than that of
LETR and Deformable DETR as a result of importing ghost
modules.

The experiment results on the reconstruction areas of
leading and trailing edges demonstrate that LETR and
GLETR have superior performance. Nonetheless, GLETR’s
performance in detecting dense and small targets still needs
to be improved, which is one of the focuses of our future
works.

To test the performance of LETR and GLETR on general
small objects detection tasks, we also conducted experiments
on two remote sensing datasets: RSOD [60] and NWPU
VHR-10 [61]. However, the results on these two remote
sensing datasets were not ideal. Due to the imbalanced num-
bers of different classes’ images, we encountered the long-tail
effect. We plan to address this problem by applying more
data augmentation methods, not just random flipping, crop-
ping, and resizing.

We also want to mention that this paper still has some
subsequent works to be accomplished. The reconstruction
areas’ sizes in images are quite different from their actual
sizes. Hence, the correspondence between the actual sizes
and the sizes in an image is of great essence. In this article,
we did not give such correspondence. So, it is worth explor-
ing how to transfer the detected positions of reconstruction
areas in images into real-world models.

6. Conclusions

Aiming to detect the reconstruction area of the near-net-
shaped blade, this paper proposed two end-to-end and
anchor-free models based on Deformable DETR. Experi-
ment results show that the proposed models have higher
accuracy and less weight, respectively. They also offer strong
support to our following works. The main contributions of
this article are concluded as follows:

(1) We optimized the architecture of Deformable DETR
from the aspect of feature extraction and activation
function. The new model was named after LETR.
LETR extracts features from a frequency-channel
mixed domain and activates nonlinear units dynam-
ically. The test results on the self-made dataset
LDEG2021 surpassed the baseline model by mAP
of 1.3% on a single GPU

(2) On the other hand, we imported the ghost module to
LETR and presented a lightweight model, GLETR.
Compared with LETR, GLETR achieved a faster con-

vergence speed and less model weight with a tiny
decrease in accuracy on LDEG2021. It is proved that
GLETR has the potential to be applied to real-time
detection

(3) We are capable of obtaining the position and area of
the reconstruction area with high efficiency and no
errors caused by human experience by applying
LETR and GLETR to our task. With the position
and area, we can know the geometric parameters of
the reconstructed curves by exploring parameter
extraction algorithms

LETR and GLETR are two successful attempts combin-
ing object detection and adaptive machining. However, there
are some issues remained in this paper and can be investi-
gated in the future:

(1) GLETR has its disadvantages when detecting the tar-
gets in the bottom area of the blade. That is due to
the fact that the objects cover each other and some
features are ignored by the ghost module. One
potential solution to this problem is to feed the net-
work with images of larger sizes during the training
process, by which the position and semantic infor-
mation is enhanced

(2) The test results of LETR and GLETR on remote
sensing datasets were unsatisfactory due to the
long-tail effect. Here, we suggest adopting more data
augmentation algorithms to keep the number of
objects’ classes balanced. A promising way is to
stitch the images, especially for the objects which
have fewer images

(3) We need to extract the geometric parameters in
images in the future. In detail, the next step is to find
the relationship between the coordinates of the
reconstruction area’s each pixel and its correspond-
ing geometric parameters, like curvature and chord
length

Data Availability

The data of this article is within the paper. The code and
dataset will be available after acceptance.

Conflicts of Interest

The authors declare that there is no conflict of interest
regarding the publication of this article.

Acknowledgments

This work is supported by the National Science and Technology
Major Project of China (J2019-VII-0001-0141), the National
Nature Science Foundation of China (51905441), and the
Fundamental Research Funds for Central Universities of China
(31020200506002). The authors sincerely thank all anonymous
editors and reviewers for their constructive review of this man-
uscript. The preprint of this paper has been published [62].

17Journal of Sensors



References

[1] J. E. Makem, O. Hengan, and C. G. Armstrong, “A virtual
inspection framework for precision manufacturing of aerofoil
components,” Computer-Aided Design, vol. 44, no. 9,
pp. 858–874, 2012.

[2] Y. Feng, J. Ren, and Y. Liang, “Prediction and reconstruction
of edge shape in adaptive machining of precision forged
blade,” International Journal of Advanced Manufacturing
Technology, vol. 96, no. 5-8, pp. 2355–2366, 2018.

[3] Z. Yin, J. Ren, and Y. Liang, “Classification of blade’s leading
edge based on neural networks in adaptive machining of
near-net-shaped blade,” International Journal of Precision
Engineering and Manufacturing, vol. 22, no. 11, pp. 1817–
1828, 2021.

[4] I. Goodfellow, J. Pouget-Abadie, M. Mirza et al., “Generative
adversarial nets,” Advances in Neural Information Processing
Systems, vol. 27, p. 16, 2014.

[5] L. Liu, W. Ouyang, X. Wang et al., “Deep learning for generic
object detection: a survey,” International Journal of Computer
Vision, vol. 128, no. 2, pp. 261–318, 2020.

[6] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature
hierarchies for accurate object detection and semantic segmen-
tation,” in 2014 IEEE Conference on Computer Vision and Pat-
tern Recognition, pp. 580–587, Columbus, Ohio, USA, 2014.

[7] R. Girshick, “Fast R-CNN,” in 2015 IEEE International Confer-
ence on Computer Vision, pp. 1440–1448, 2015.

[8] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: towards
real-time object detection with region proposal networks,”
IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, vol. 39, no. 6, pp. 1137–1149, 2017.

[9] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only
look once: unified, real-time object detection,” in 2016 IEEE
Conference on Computer Vision and Pattern Recognition,
pp. 779–788, 2016.

[10] J. Redmon and A. Farhadi, “YOLO9000: better, faster, stron-
ger,” in 2017 IEEE Conference on Computer Vision and Pattern
Recognition, pp. 6517–6525, 2017.

[11] J. Redmon and A. Farhadi, “YOLOv3: an incremental
improvement,” 2018, http://arxiv.org/abs/1804.02767v1.

[12] A. Bochkovskiy, C. Y. Wang, and H. Liao, “YOLOv4: optimal
speed and accuracy of object detection,” 2020, http://arxiv
.org/abs/2004.10934v1.

[13] W. Liu, D. Anguelov, D. Erhan et al., “SSD: single shot multi-
box detector,” in European Conference on Computer Vision,
vol. 9905, 2016.

[14] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollar, “Focal
loss for dense object detection,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 42, no. 2, pp. 318–327,
2020.

[15] X. Zhu, W. Su, L. Lu, B. Li, X. Wang, and J. Dai, “Deformable
DETR: deformable transformers for end-to-end object detec-
tion,” 2020, http://arxiv.org/abs/2010.04159v2.

[16] Z. Yun, C. Zhi-Tong, and N. Tao, “Reverse modeling strategy
of aero-engine blade based on design intent,” The Interna-
tional Journal of Advanced Manufacturing Technology,
vol. 81, no. 9-12, pp. 1781–1796, 2015.

[17] Z. Zhao, Y. Fu, X. Liu, J. Xu, J. Wang, and S. Mao, “Measure-
ment-based geometric reconstruction for milling turbine blade
using free-form deformation,”Measurement, vol. 101, pp. 19–
27, 2017.

[18] H. Yu, L. Xuegeng, and P. Liu, “Stream surface reconstruction
of aero engine blade based on limited measured points,”
Advances in Engineering Software, vol. 131, pp. 90–101, 2019.

[19] Y. Zhang, Z. Chen, and Z. Zhu, “Adaptive machining frame-
work for the leading/trailing edge of near-net-shape integrated
impeller,” International Journal of Advanced Manufacturing
Technology, vol. 107, no. 9-10, pp. 4221–4229, 2020.

[20] D. Wu, H. Wang, K. Zhang, B. Zhao, and X. Lin, “Research on
adaptive CNC machining arithmetic and process for near-net-
shaped jet engine blade,” Journal of Intelligent Manufacturing,
vol. 31, no. 3, pp. 717–744, 2020.

[21] B. Singh and L. S. Davis, “An analysis of scale invariance in
object detection - SNIP,” in 2018 IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 3578–3587,
2018.

[22] B. Singh, M. Najibi, and L. S. Davis, “SNIPER: efficient multi-
scale training,”Advances in Neural Information Processing Sys-
tems, vol. 31, 2018.

[23] W. Zhang, L. Jiao, X. Liu, and J. Liu, “Multi-scale feature fusion
network for object detection in VHR optical remote sensing
images,” in IGARSS 2019 - 2019 IEEE International Geoscience
and Remote Sensing Symposium, pp. 330–333, 2019.

[24] T.-Y. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, and
S. Belongie, “Feature pyramid networks for object detection,”
in 2017 IEEE Conference on Computer Vision and Pattern Rec-
ognition, pp. 936–944, 2017.

[25] W. Liu, L. Ma, and C. He, “Arbitrary-oriented ship detection
framework in optical remote-sensing images,” IEEE Geosci-
ence and Remote Sensing Letters, vol. 15, no. 6, pp. 937–941,
2018.

[26] H. Law and J. Deng, “CornerNet: detecting objects as paired
keypoints,” International Journal of Computer Vision,
vol. 128, no. 3, pp. 642–656, 2018.

[27] X. Zhou, J. Zhuo, and P. Krähenbühl, “Bottom-up object
detection by grouping extreme and center points,” in 2019
IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition, pp. 850–859, 2019.

[28] X. Zhou, D. Wang, and P. Krhenbühl, “Objects as points,”
2019, http://arxiv.org/abs/1904.07850v2.

[29] X. Zhou, V. Koltun, and P. Krhenbühl, “Probabilistic two-
stage detection,” 2021, http://arxiv.org/abs/2103.07461v1.

[30] R. Dong, D. Xu, J. Zhao, L. Jiao, and J. An, “Sig-NMS-based
faster R-CNN combining transfer learning for small target
detection in VHR optical remote sensing imagery,” IEEE
Transactions on Geoscience and Remote Sensing, vol. 57,
no. 11, pp. 8534–8545, 2019.

[31] Z. Cai and N. Vasconcelos, “Cascade R-CNN: delving into
high quality object detection,” in 2018 IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 6154–6162,
2018.

[32] T. Young, D. Hazarika, S. Poria, and E. Cambria, “Recent
trends in deep learning based natural language processing
[review article],” IEEE Computational Intelligence Magazine,
vol. 13, no. 3, pp. 55–75, 2018.

[33] A. Vaswani, N. Shazeer, N. Parmar et al., “Attention is all you
need,” Advances in Neural Information Processing Systems,
vol. 30, 2017.

[34] N. Carion, F. Massa, G. Synnaeve, N. Usunier, A. Kirillov, and
S. Zagoruyko, “End-to-end object detection with trans-
formers,” in European Conference on Computer Vision,
pp. 213–229, 2020.

18 Journal of Sensors

http://arxiv.org/abs/1804.02767v1
http://arxiv.org/abs/2004.10934v1
http://arxiv.org/abs/2004.10934v1
http://arxiv.org/abs/2010.04159v2
http://arxiv.org/abs/1904.07850v2
http://arxiv.org/abs/2103.07461v1


[35] Z. Sun, S. Cao, Y. Yang, and K. M. Kitani, “Rethinking
transformer-based set prediction for object detection,” 2020,
http://arxiv.org/abs/2011.10881v1.

[36] Z. Tian, C. Shen, H. Chen, and T. He, “Fcos: fully convolu-
tional one-stage object detection,” in Proceedings of the IEEE/
CVF international conference on computer vision, pp. 9627–
9636, 2019.

[37] J. Dai, H. Qi, Y. Xiong et al., “Deformable convolutional net-
works,” in 2017 IEEE International Conference on Computer
Vision, pp. 764–773, 2017.

[38] R. Hahnloser, R. Sarpeshkar, M. A. Mahowald, R. J. Douglas,
and H. S. Seung, “Digital selection and analogue amplification
coexist in a cortex-inspired silicon circuit,” Nature, vol. 405,
no. 6789, pp. 947–951, 2000.

[39] I. J. Goodfellow, D. Warde-Farley, M. Mirza, A. Courville, and
Y. Bengio, “Maxout networks,” 2013, http://arxiv.org/abs/1302
.4389v1.

[40] S. Elfwing, E. Uchibe, and K. Doya, “Sigmoid-weighted linear
units for neural network function approximation in reinforce-
ment learning,” Neural Networks, vol. 107, pp. 3–11, 2018.

[41] P. Ramachandran, B. Zoph, and Q. V. Le, “Searching for acti-
vation functions,” 2017, http://arxiv.org/abs/1710.05941.

[42] N. Ma, X. Zhang, and J. Sun, “Funnel activation for visual rec-
ognition,” in European Conference on Computer Vision,
pp. 351–368, 2020.

[43] Y. Chen, X. Dai, M. Liu, D. Chen, L. Yuan, and Z. Liu,
“Dynamic relu,” in European Conference on Computer Vision,
pp. 351–367, 2020.

[44] N. Ma, X. Zhang, and J. Sun, “Activate or not: learning cus-
tomized activation,” 2020, http://arxiv.org/abs/2009.04759v2.

[45] Y. Wang, C. Xu, S. You, D. Tao, and C. Xu, “Cnnpack: packing
convolutional neural networks in the frequency domain,”
Advances in Neural Information Processing Systems, vol. 29,
2016.

[46] C. Liu, Y.Wang, K. Han, C. Xu, and C. Xu, “Learning instance-
wise sparsity for accelerating deep models,” in Proceedings of
the 28th International Joint Conference on Artificial Intelli-
gence, pp. 3001–3007, 2019.

[47] B. Jacob, S. Kligys, B. Chen et al., “Quantization and training of
neural networks for efficient integer-arithmetic-only infer-
ence,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 2704–2713, 2018.

[48] H. Chen, Y. Wang, C. Xu et al., “Data-free learning of student
networks,” in Proceedings of the IEEE/CVF International Con-
ference on Computer Vision, pp. 3514–3522, 2019.

[49] K. Han, Y. Wang, Q. Tian, J. Guo, C. Xu, and C. Xu, “Ghost-
Net: more features from cheap operations,” in 2020 IEEE/
CVF Conference on Computer Vision and Pattern Recognition,
pp. 1577–1586, 2020.

[50] F. Chollet, “Xception: deep learning with depthwise separable
convolutions,” in Proceedings of the IEEE conference on com-
puter vision and pattern recognition, pp. 1251–1258, 2017.

[51] A. G. Howard, M. Zhu, B. Chen et al., “MobileNets: efficient
convolutional neural networks for mobile vision applications,”
2017, http://arxiv.org/abs/1704.04861v1.

[52] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L. C.
Chen, “MobileNetV2: inverted residuals and linear bottle-
necks,” in 2018 IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 4510–4520, 2018.

[53] A. Howard, M. Sandler, G. Chu et al., “Searching for Mobile-
NetV3,” in 2019 IEEE/CVF International Conference on Com-
puter Vision, pp. 1314–1324, 2019.

[54] B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le, “Learning
transferable architectures for scalable image recognition,” in
Proceedings of the IEEE conference on computer vision and pat-
tern recognition, pp. 8697–8710, 2018.

[55] X. Zhang, X. Zhou, M. Lin, and J. Sun, “ShuffleNet: an
extremely efficient convolutional neural network for mobile
devices,” in 2018 IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 6848–6856, 2018.

[56] N. Ma, X. Zhang, H.-T. Zheng, and J. Sun, “ShuffleNet V2:
practical guidelines for efficient CNN architecture design,” in
European Conference on Computer Vision, pp. 122–138, 2018.

[57] T.-Y. Lin, M. Maire, S. Belongie et al., “Microsoft COCO: com-
mon objects in context,” in European Conference on Computer
Vision, pp. 740–755, 2014.

[58] Z. Qin, P. Zhang, F. Wu, and X. Li, “FcaNet: frequency channel
attention networks,” 2020, http://arxiv.org/abs/2012.11879.

[59] K. Chen, J. Wang, J. Pang et al., “MMDetection: open MMLab
detection toolbox and benchmark,” 2019, http://arxiv.org/abs/
1906.07155.

[60] Y. Long, Y. Gong, Z. Xiao, and Q. Liu, “Accurate object local-
ization in remote sensing images based on convolutional neu-
ral networks,” IEEE Transactions on Geoscience and Remote
Sensing, vol. 55, no. 5, pp. 2486–2498, 2017.

[61] C. Gong, P. Zhou, and J. Han, “Learning rotation-invariant
convolutional neural networks for object detection in VHR
optical remote sensing images,” IEEE Transactions on Geosci-
ence and Remote Sensing, vol. 54, no. 12, pp. 7405–7415, 2016.

[62] Z. Yin, Y. Liang, J. Ren, J. An, and F. He, “LETR: an end-to-end
detector of reconstruction area in blade’s adaptive machining
with transformer,” 2022, Preprints: 2021090332.

19Journal of Sensors

http://arxiv.org/abs/2011.10881v1
http://arxiv.org/abs/1302.4389v1
http://arxiv.org/abs/1302.4389v1
http://arxiv.org/abs/1710.05941
http://arxiv.org/abs/2009.04759v2
http://arxiv.org/abs/1704.04861v1
http://arxiv.org/abs/2012.11879
http://arxiv.org/abs/1906.07155
http://arxiv.org/abs/1906.07155

	LETR: An End-to-End Detector of Reconstruction Area in Blades Adaptive Machining with Transformer
	1. Introduction
	2. Related Works
	2.1. Reconstruction of Edge Shape
	2.2. Small Object Detection
	2.3. The Self-Attention Mechanism in Computer Vision
	2.4. Activation Functions
	2.5. Efficient Networks

	3. Revisiting Deformable Attention
	3.1. Self-Attention Mechanism
	3.1.1. Multihead Attention
	3.1.2. Position Embedding
	3.1.3. Match Loss

	3.2. Deformable Attention

	4. LETR and GLETR
	4.1. Overview of LETR
	4.2. Feature Extraction
	4.3. Activation Function
	4.4. Ghost Module

	5. Experiments
	5.1. Dataset
	5.2. Data Augmentation
	5.3. Results and Discussions
	5.3.1. Evaluation Metrics
	5.3.2. Results on LDEG2021 Dataset


	6. Conclusions
	Data Availability
	Conflicts of Interest
	Acknowledgments

