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Abstract
The near-net-shaped blade is adopted in the aero engine as it’s material-saving and efficient. However, the leading edge 
shape’s curvature is sharply changed in its machining process and the deformation trend of each cross section has slight 
differences. Using the traditional machining method is exhausting and time-consuming. Furthermore, it brings more errors 
during the whole machining process. Therefore, adaptive machining is imported in the machining of the near-net-shaped blade 
and the leading edge is to be reconstructed during this process. Besides, it is necessary to know whether the reconstructed 
leading edge is qualified. To address these two issues, a novel approach is proposed to discriminate and classify leading 
edges. In this paper, we trained a style transform model of generative adversarial networks with theoretical leading edges and 
used its discriminator network to evaluate the similarity of reconstructed leading edges we had accomplished in our previ-
ous work to establish a standard for the qualified reconstructed leading edge. Then, as the curvature of the near-net-shaped 
blade changes sharply and has complex features, which requires high accuracy of classification, different DenseNet models 
were adopted to classify whether these reconstructed images are qualified. We experimented on our LDEG dataset and the 
highest accuracy on the test set was 88.7%. The experiment results demonstrated that the proposed method is effective in 
evaluating and classifying leading edges in the machining process.

Keywords Near-net-shape blade · Adaptive machining · Discrimination · Style transformation · DenseNet · Classification

1 Introduction

The modern commercial airplane has required better aero 
engine performance. Near-net-shaped blades are applied 
to the blades of the aero engine. The geometric parameters 
of the near-net-shape blade’s suction/pressure surface have 
met the design requirement after being forged, which means 
that it needs no further machining, while the leading/trailing 
edge cannot be forged precisely due to the sharply changing 

curvature. Therefore, the redundant blank of this area needs 
to be removed in the machining process. Complex deforma-
tion, however, exists in each blank, such as changes in a 
twist, thickness, position, and curvature [1]. If the leading/
trailing edge was machined according to pressure/suction 
surface, the uncertainty of the blank’s geometric shape and 
spatial position will lead to that the leading/trailing edge 
cannot connect with the blade body smoothly. Besides, 
errors in the forming of suction/pressure surfaces are una-
voidable. Using a theoretical leading/trailing edge to plan 
the machining tool path will result in flaws. In this case, it is 
essential to adjust the machining program according to dif-
ferent blades, which means the leading/trailing edge model 
adjusted to the forged blade needs to be reconstructed. An 
example of the spatial relationship of the blank, theoretical 
leading edge of a cross section is shown in Fig. 1. To solve 
the problem mentioned above, adaptive machining technol-
ogy [2] is introduced. Adaptive machining adapts manufac-
turing data to suit changed conditions and it is suitable for 
the manufacturing of complex surfaces, which is the key 
component of advanced manufacturing.
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Adaptive machining includes digital measurement, data 
matching, and model reconstruction. Firstly, digital data of 
blades is obtained by measurement, which is followed by 
data registration (matching). After that, model reconstruc-
tion technology is applied to each blade’s specific cross sec-
tion, by which, deformation trend information and design 
intend are taken into consideration to reconstruct its model.

However, the existed model reconstruction theories 
mainly focus on the smooth connection between model 
and blank material, instead of the similarity of theoreti-
cal shape. Only when the above requirements are taken 
into account in the process of model reconstruction and a 
model reconstruction theory with multiple constraints is 
established, can the design intention of high-performance 
free-form surface be complied with to the maximum extent 
and the accurate construction of machining process geo-
metric model be carried out. Figure 2 gives two different 

reconstructed leading edges. These two reconstructed lead-
ing edges all satisfy the requirement of smooth connection, 
while the shapes vary. As design intent is to be retained to 
the maximum extent, which means that reconstructed lead-
ing edges are supposed to be similar to theoretical leading 
edges, we selected the similarity between reconstructed 
and theoretical leading edges as our principle. Unfortu-
nately, the similarity between reconstructed and theo-
retical leading edges is hard to illustrate and quantified. 
In this paper, we tried to solve this problem by applying 
generative adversarial networks (GAN) as it defines the 
similarity between two different images according to their 
feature maps extracted by convolutional neural networks. 
In this method, details of reconstructed leading edges are 
reserved and the whole evaluation is more precise than the 
traditional method as we retained the original design intent 
as possible. Additionally, our data contains less semantic 
information, which results in the phenomenon that the key 
information could be lost after multiple layers of convolu-
tion. Hence, a suitable classification algorithm is desired 
for our forthcoming research. Our main works are dem-
onstrated as follows:

(1) We proposed a novel method used to evaluate the simi-
larity between a theoretical leading edge and a recon-
structed leading edge based on generative adversarial 
networks.

(2) We trained a style transform model and took its dis-
criminator to evaluate the similarity value above men-
tioned based on previous manual works, by which we 
built a standard for qualified reconstructed leading 
edges.

(3) A classification approach using DenseNet neural net-
work was applied to automatically classify whether the 
reconstructed leading edge is qualified.

Fig. 1  Theoretical leading edge 
and blank

Reconstructed leading edge 1

Reconstructed leading edge 2

Fig. 2  Different shapes of reconstructed leading edges
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2  Related Works

Our works are based on the following three domains: adap-
tive machining, generative adversarial networks, and clas-
sification networks.

2.1  Adaptive Machining

Two key steps are included in the adaptive machining pro-
cess: data registration and model reconstruction. As for 
data registration, Khameneifar et al. [3] proposed a method 
to evaluate the tolerance of blade position and torsion by 
determining the position of the overlapping points in the 
section line. Huang et al. [4] adopted the optimal fitting 
algorithm to complete the global accurate registration. 
Shi et al. [5] used the combined registration algorithm of 
normal distribution transformation and nearest point itera-
tion (NDT-ICP) to carry out point cloud registration. Yu 
et al. [6] applied the deviation distribution on evaluating 
the point-to-point deviation to distinguish manufacturing 
errors from measurement errors. Chen et al. [7] proposed 
a feature-based registration method mainly focused on 3D 
eddy current pulsed thermography. In this paper, our main 
focus is the reconstruction of models, and data registration 
won’t be further discussed.

Based on the different measurement methods, model 
reconstruction approaches can be divided into two types 
[8]: the model reconstruction based on scattered point 
cloud data and the model reconstruction based on regular 
point sets. Brujic et al. [9] proposed a modification method 
of the NURBS surface model based on scattered point 
clouds in three-dimensional space. This method overcomes 
the basic problem of singular or ill-conditioned matrices 
caused by incomplete data sets. However, the blade design 
process is based on a complex three-dimensional flow 
field, which relies heavily on multi-disciplinary design 
optimization. Because it takes a long time and is ineffi-
cient to calculate the three-dimensional flow field, this 
process is usually simplified to the superposition of two-
dimensional cross sections. In terms of blade’s reconstruc-
tion, considering the parameterized design process of the 
blade, the reconstruction method based on regular point 
sets is more used. Generally speaking, there are two types 
of this method. The first one is to fit or interpolate the 
measured data to construct a new curve or surface, which 
requires more data to make the new curves or surfaces 
match the measured points. Ke et al. [10, 11] proposed a 
constrained fitting method, which improved numerical sta-
bility. Khameneifar et al. [12] proposed an airfoil genera-
tion method according to measurement uncertainty value. 
The fitting or interpolating process requires a large number 

of data to make the constructed curves/surfaces match the 
measured data. The second method is to modify curves or 
surface parameters, by which object properties with fewer 
measured data are maintained. Piegl et al. [13] modified 
the shape of a non-uniform rational basis spline curve/
surface, which was based on control-point and weight. Hu 
et al. extended Piegl’s method to a constrained optimiza-
tion problem, where the surface energy was optimized to a 
minimum under geometric constraints. These two methods 
adopted a common algorithm to modify the curve/surface 
mathematically. In terms of blade’s machining, industrial 
requirement and conditions, geometric constraints, and 
data missing are supposed to be included, which means 
the blade’s reconstruction algorithm should be specific. 
To bring design intent to reconstruction, Mohaghegh et al. 
[14, 15] used multi-segment arcs instead of spline curve 
fitting to realize the model reconstruction of blades. After 
that, they searched for some design parameters and intro-
duced external geometric features to the reconstruction of 
the actual profile. Dong et al. [16] calculated circles whose 
center was located on the axial curve to reconstruct the 
profile curves and improved the continuity of curves. Yun 
et al. [17] took geometric constraint into consideration 
and import upper and lower tolerance to reconstruction. 
Li et al. [18] improved smoothness by minimizing strain 
energy. These methods were used to reconstruct the curves 
with complete data. Nevertheless, a part of the data of the 
curve might be inaccurate or missing. To solve this prob-
lem, Yilmaz et al. [19] interpolated the absence of blade 
by adjacent measured data. Zhao et al. [20] used an itera-
ble algorithm to improve the accuracy of the reconstructed 
absent part by inserting knots. The abovementioned meth-
ods are not suitable for parts with sharply-changed curva-
ture such as precision-forged blade and near-net-shaped 
blade’s leading trailing edge anymore. Besides, the forging 
process itself brings additional deformation to the blade. 
To address this issue, Feng et al. [21] proposed a method 
based on deformation to predict the profile of blades. Wu 
et al. [22] used distance relationship, angle relationship, 
and radius relationship to cull measuring bad point. These 
previous works did not fully consider the design inten-
tion of the blade and the similarity between the actual 
blade surface and the theoretical surface and the similar-
ity discrimination principle are to be further and deeply 
researched.

2.2  Generative Adversarial Networks

In the field of generative adversarial networks, Goodfellow 
et al. [23] proposed the generative adversarial networks for 
the first time. After that, Mehdi Mirza et al. [24] proposed a 
conditional generative adversarial model to lead generative 
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adversarial networks to generate needed images. Phillip Isola 
et al. [25] proposed that an image generation task is to perform 
a pixel-to-pixel transformation. Jun-Yan Zhu et al. [26] applied 
cycle-consistent loss on generative adversarial networks to pre-
serve the content of input images. These models have difficulty 
generating images in multi-domains as models are to be built 
separately for every pair of domains. Therefore, Yunjey Choi 
et al. [27] proposed starGAN model, for realizing the one-to-
multi transformation task.

2.3  Classification Networks

In terms of images classification, neural network [28] has 
become a popular field in recent years, resulting in applications 
related to object detection and classification [29]. In recent 
years, Simonyan et al. [30] found that increasing the number 
of layers of convolutional neural networks plays an important 
role in improving the performance of those networks. There-
fore, they proposed a VGGNet with nineteen layers. After 
that, more and more deep convolutional network models have 
been used. As the depth of the convolutional neural network 
increases, the image information will gradually disappear as 
the convolutional layer deepens. To solve this problem, Kaim-
ing He et al. [31] proposed ResNet, using skip connection to 
train a model with high performance. Gao H et al. [32] pro-
posed the DenseNet and obtained better results than ResNet.

This paper is structured as follows: Sect. 3 presents the 
proposed method including discrimination and classification. 
Section 4 gives the training detail. Section 5 reports the experi-
mental result and discussion. Finial conclusion is depicted in 
Sect. 6.

3  Proposed Method

3.1  Revisiting GAN

A generative adversarial network (GAN) consists of two 
independent neural networks: a discriminator and a generator. 
The main job of the generator is to generate images while the 
main job of the discriminator is to classify whether these fake 
images are real. The goal of a generative adversarial model 
can be written as:

where x is sampled from the training dataset and z represents 
a group of random noises. D and G denote discriminator and 
generator respectively.

The generator’s loss function can be written as:

(1)
min
G

max
D

V(D,G) = Ex∼pdata(x)

[
logD(x)

]
+ Ez∼pz(z)

[
log (1 − D(G(z)))

]

(2)LG = Ez∼pz(z)

[
log(1 − D(G(z))

]

And the loss function of the discriminator is:

For a single input image  xi, the loss function of the dis-
criminator can be written as:

LD evaluates the probability of that the input image x 
belongs to the target image’s domain. In our task, the value of 
 LD represents the probability of assigning the label ‘theoreti-
cal leading edge’ to the reconstructed leading edge. In other 
words, the higher the probability is, the more similar the theo-
retical leading edge the reconstructed leading edge is.

3.2  Similarity Discrimination

In this paper, we annotated reconstructed leading edge images 
with two domains: thin and thick according to blank materi-
al’s thickness information. Unfortunately, previous generative 
adversarial network models focus on a specific domain and are 
unable to generate images in multi-domains. Therefore, we 
used a style transform model of generative adversarial network 
to evaluate its similarity.

Considering the instability of the generative adversarial 
model itself and the difference of the input dataset, we imple-
mented normalization to the loss function of the discriminator, 
denoted as L. The final similarity value is as follows:

where N is the number of images.
If we use  St to represent the standard similarity value,  St 

can be calculated by:

After the process mentioned above is finished, the recon-
structed leading edge images were divided into two groups 
(qualified and unqualified) based on the following rules:

By importing similarity value  Si, we transfer the differences 
of reconstructed leading edge and theoretical leading edge into 
the distance between their images in the spatial domain, in 
which  Si can be interpreted as:

(3)LD = Ex∼pdata(x)

[
logD(x)

]

(4)Li
D
= Exi∼pdata(x)

[
logD

(
xi
)]

(5)si =
Li

∑N

j
Lj

(6)
st =

(
max

i=1,2...,N

(
si
)
− min

i=1,2...,N

(
si
))

2

(7)si =

{
> st qualified

< st unqualified

(8)si =
‖‖urec − utheo

‖‖
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where  urec and  utheo denote the feature maps of reconstructed 
leading edge and theoretical leading edge after convolutions. 
This distance represents the reconstructed leading edge’s 
deviation from its corresponding theoretical leading edge.

In this work, we use theoretical leading edge images to 
train the discriminator of GAN and applied it to the evalu-
ation of the similarity value of reconstructed leading edge 
images. The overview of the method is shown in Fig. 3.

We adopted and modified the architecture of StarGAN 
[27], the generator has a convolutional layer with a kernel 
size of seven and a stride size of one for down-sampling and 
two convolutional layers with kernel sizes of four and stride 
size of two for up-sampling. For the discriminator network, 
we used two convolutional layers with different kernel sizes 
for computing adversarial loss and domain classification 
loss. The detail of our model is shown in Fig. 4.

3.3  Classification

Unlike the general dataset in the complex scenario such as 
COCO, our dataset is very simple and contains less semantic 
information. The leading edge’s information could be lost 
after multiple convolutional operations. In this case, tradi-
tional convolutional neural network models are not suitable 
anymore. Aiming to address this kind of question, a typical 
solution is to import residual connection and the model is 
named ResNet.

Gao H et al. proposed the DenseNet in 2017, which 
had an excellent performance on CIFAR-10, CIFAR-100, 

SVHN, and ImageNet datasets than ResNet. DenseNet has 
some similarities with ResNet. One big difference between 
the two is that DenseNet builds fully connected layers, 
that is, the output of every layer is connected with the 
later layers. If we use X0,X1,X2, ....,Xl − 1 to represent 
the output of previous (l − 1) layers, the output of  lth can 
be expressed as:

Hl(.) is defined as three continuous operations: batch nor-
malization [33], ReLU function, and convolution with a 
3 × 3 kernel.

DenseNet consists of four DenseBlocks and three 
Transition layers. DenseBlock mainly focuses on feature 
extraction and Transition compresses the dimension of the 
feature map to reduce the network’s parameter. Figure 5 
illustrates its architecture of connection.

What DenseBlock uses is the dense connection, which 
is expressed as Xl = Hl([X0,X1,X2, ....,Xl − 1]) . Its inner 
connection is illustrated as Fig. 6.

where different colors represent feature maps. Transi-
tion layers aim to connect two adjacent layers and reduce 
the size of the DenseBlock output image. It includes a 
convolution operation with a convolution kernel size size 
of 1 × 1 and a 2 × 2 average pooling. DenseNet can be 
divided into different models due to their different num-
bers of respective layers. According to [32], DenseNet121, 
DenseNet161, DenseNet169, and DenseNet201 got 

(9)Xl = Hl([X0,X1,X2, ....,Xl − 1])

(a) (b)

Fig. 3  Overview of proposed discrimination method
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extraordinary performance in ImageNet competition. 
Hence, we selected these four models as our classifiers.

DenseNet directly connects different layers and makes 
use of uniform-size feature maps and corresponding feature 
channels for feature reuse, which can effectively reduce the 
number of parameters, so that the gradient value will not be 
too large or too small in the training process, and the gradi-
ent explosion can be prevented. What’s more, it allows us 
to train the network at a deeper level without compromis-
ing the effectiveness of the training because of the deeper 
network layers.

4  Experiments

4.1  Dataset

The dataset we applied was created by ourselves and was 
named by LDEG. LDEG dataset contains 44 theoretical 
leading edge images of different cross sections and 143 
reconstructed leading edge images which are annotated with 
two binary attributes. As theoretical leading edge images are 
only to train a discriminator for similarity discrimination, the 
annotation is set to be all theoretical. The detail of LDEG 
dataset is shown in Table. 1.

Generally speaking, neural network obtains better per-
formance based on more data. However, theoretical leading 
edge data in LDEG dataset are limited. A solution for this 
issue is to use data augmentation to enlarge the dataset. We 
performed appropriate flips horizontally for the training data 
to expand the dataset. Figure 7 is the images before and after 
the geometric flip of the same training set picture.

Assuming that (i,j) is the coordinate of the original image, 
the new image’s coordinate can be computed as:

where 
(
i′, j′

)
 represents the coordinates of the new image and 

� represents the angle of rotation. After the flipping opera-
tion, we can expand the number of inputs fourfold.

The training set contains 80 qualified images and 110 
unqualified images. The test set contains 60 images of qualified 

(10)
[
i�

j�

]
=

[
cos � − sin �

sin � cos �

][
i

j

]

Input

Conv, 4×4

LeakyReLU

Conv, 3×3

LeakyReLU

Conv, 3×3 Conv, 64×64

Output Output

Input

Conv, 7×7

LeakyReLU

Conv, 4×4

ReLU

ConvTrans, 4×4

ReLU

ConvTrans, 4×4

ReLU

Conv, 3×3

Tanh

Output

(a) Discriminator (b) Generator

Fig. 4  Structures of discriminator and generator

DenseBlock Transition

Fig. 5  DenseNet’s connection

Fig. 6  The inner connection of a DenseBlock

Table. 1  Statistic of LDEG dataset

Type Number Domain Label

Theoretical leading 
edge

44 Theoretical None

Reconstructed leading 
edge

310 Thin, thick, theoretical Qualified, 
unquali-
fied
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leading edges and 60 images of unqualified leading edges. It 
should be noticed that all training data of DenseNet had been 
classified through the similarity principle above mentioned. To 
make the model more stable, we standardized the training data. 
Assuming x is the input picture, the standardization method 
is written as follows:

4.2  Training Process

4.2.1  Training of GAN

In this paper, the full loss function is divided into three parts: 
traditional adversarial loss, domain classification loss, and 
reconstruction loss. Traditional adversarial loss is written as:

(11)z = (x∕255 − 0.5)∕0.5

(12)Ladv = Ex

[
logDori(x)

]
+ Ex,c

[
log

(
1 − Dori(G(x, c))

)]

where x is the input real image and c is the target domain 
label. Equation (4) was replaced with Wasserstein distance 
[34, 35] to secure the diversity of generated images. So, the 
adversarial loss is rewritten as:

where x′ is sampled uniformly along a straight line between 
a pair of real and generated images and �gp is the weight of 
Wasserstein distance.

In addition, a domain classification loss is defined as an 
output image is supposed to be classified to its correspond-
ing domain. Domain classification loss has 2 parts and is 
written as follows:

(13)
Ladv = Ex[Dori(x)] − Ex,c[Dori(G(x, c))] − �gpEx

� [(||∇Dori(x
�

)||2 − 1)2]

(14)Lr
cls

= Ex,c� [− logDcls(c
�|x)]

(15)L
f

cls
= Ex,c[− logDcls(c|G(x, c))]

Fig. 7  Results of rotating an 
image by different angle
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where c′ is the original domain of input real image. Lr
cls

 is 
used to optimize the discriminator and Lf

cls
 is used to opti-

mize the generator. By minimizing loss functions, the dis-
criminator learns to classify input leading edge image to 
original domain and the generator learns to generate recon-
structed leading edge images that the discriminator can clas-
sify correctly.

We imported cycle consistency loss [25] as the reconstruc-
tion loss in this paper, which was defined as follows to make 
sure that input images would only change their domain-related 
part:

Overall, the full loss function can be written as:

where �cls and �rec determine the domain classification and 
reconstruction losses’ relative importance and for the whole 
training process.

We trained the GAN model with a batch size of sixteen and 
used Adam [36] with �1 = 0.5 and �2 = 0.999 . �gp was set to 
ten and finally we set �cls = 1 and �rec = 10 . The whole model 
was trained for 2000 iterations.

4.2.2  Training of DenseNet

We define the loss function in the training process as cross 
entropy, and its expression is as follows:

where y(i) is the predicted value of the ith sample, and ŷ(i) is 
the label value of the ith sample.

All the networks are trained using stochastic gradi-
ent descent. In training, we use eight neural network mod-
els: AlexNet[37], ResNet18, DenseNet121, and Dense161, 
DenseNet169, and DenseNet201. To avoid over-fitting, we set 
the learning rate to 0.001 and the number of training epochs to 
30. All training procedures were carried out on a single GPU 
of Nvidia GTX 1080Ti.

5  Results and Discussions

5.1  Results of the Discrimination

Figure 8 demonstrates evaluation results of four different 
reconstructions of the same leading edge given by the dis-
criminator, in which similarity values vary from 0 to 1.

(16)Lrec = Ex,c,c� [||x − G(G(x, c), c
�

)||1]

(17)LD = −Ladv + �clsL
r
cls

(18)LG = −Ladv + �clsL
r
cls

+ �recLrerc

(19)L = −

N∑

i=1

y(i) log(ŷ(i) +
(
1 − y(i)

)
log

(
1 − ŷ(i)

)

Our discussion of the abovementioned results is divided 
into two parts: the remained area of the theoretical leading 
edge and the reconstructed curve of the reconstructed lead-
ing edge.

By comparing remained areas of four leading edges, 
(d) remains the most part of the theoretical leading edge 
while (a) only remains a little part of the theoretical leading 
edge. As the remained part gets larger, the similarity value 
rises, which conforms to our previous manual standard for 
discrimination.

Like our discussion about remained area’s effect on simi-
larity discrimination, the same conclusion can be inferred by 
comparing reconstructed curves. The reconstructed curves 
of (d) fit more with the theoretical leading edge. On the 
contrary, the reconstructed curves of (a) differ greatly from 
their corresponding theoretical leading edge. Hence, the 
reconstructed curves’ influence on similarity identifies with 
our manual standard.

The result above illustrates that our discriminator is 
capable of evaluating the similarity of reconstructed lead-
ing edges. It should be mentioned that the higher value a 
reconstructed leading edge gets if it is more similar to theo-
retical leading edges. Accordingly, the better aerodynamic 
performance it has. Through this approach, we can obtain 
these qualified and unqualified reconstructed leading edges 
for the training of the next classification.

Theotrtical leading edge

Reconstructed leading edge

(a) value=0.327 (b) value=0.654

(c) value=0.743 (d) value=0.901

Fig. 8  Evaluation results of the discriminator
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5.2  Result of Classification

5.2.1  Evaluation Metrics

True positive (TP), false positive (FP), false negative (FN), 
True negative (TN) are usually needed in the evaluation of 
a model’s performance. We imported a confusion matrix 
for a binary classification task to define them. See Table. 2

In this paper, we utilized accuracy(Acc), precision, and 
recall to evaluate the robustness of models on test sets. They 
are formulated as follows:

Acc evaluates the performance of classification. Gener-
ally speaking, the higher acc a model gets, the better its 
classification capability is. Precision represents the ratio 
that correctly predicted samples account for all predicted 
samples and indicates the model’s ability to predict the tar-
get class. On the other side, recall is the percentage of the 
targets correctly predicted and supposed to be predicted. It 
illustrates the ability that the model searches for the correct 
targets. In the leading edge classification task, we mainly 
focus on precision as our goal is to classify the qualified 
leading edges as possible.

Besides those abovementioned metrics, we introduced 
floating point operations (FLOPs), inference time, and 
the number of parameters (denoted as #Params), which 

(20)Acc =
TP + TN

TP + FP + FN + TN

(21)Precision =
TP

TP + FP

(22)Recall =
TP

TP + FN

measures the computing efficiency and complexity of a 
neural network model.

6  Results

Table. 3 shows the recognition accuracy, precision, and 
recall of the models of AlexNet, ResNet18, DenseNet121, 
DenseNet161, DenseNet169, and DenseNet201:

DenseNet169 had the highest accuracy and precision 
of classification. For the specific problem of the leading 
edge’s reconstruction, as the data set itself contains rela-
tively simple features and there is no interference from other 
noises, the recognition accuracy of the DenseNet network 
could reach 88.7%. In the leading edge classification task, 
we mainly focus on the Acc and Precision. Based on the 
experiment results above, we inferred that DenseNet169 is 
the most suitable for classifying leading edges. The clas-
sification error is acceptable during the machining process. 
However, DenseNet169 and DenseNet201 did not perform 
well on the test set as we expected. Some factors contrib-
ute to this result. The first reason is that DenseNet169 and 
DenseNet201 contain more parameters, which means that 
more time is needed for training. Besides, the number of 
images of the LDEG dataset limits the final performance 
of DenseNet169 and DenseNet201. In future work, the 
set of training parameters of the DenseNet model and the 
augmentation method of the LDEG dataset can be further 
investigated.

The above results indicate that the DenseNet network can 
effectively identify the bridge of the leading edge. For the 
specific problem of the leading edge’s bridging, because 
the training set itself contains relatively simple features and 
there is no interference from other noises, the recognition 
accuracy of the DenseNet network could reach 88.7% and 
the classification error is acceptable during the machining 
process. Compared with DenseNet, AlexNet has simpler lay-
ers and architecture, so it rates lower than DenseNet in terms 
of recognition accuracy.

Figure 9 gives an example of the final classification result 
on the same cross section. Although these two reconstructed 
leading edges meet the machining requirement, that is, hav-
ing a smooth connection with blank material, the unqualified 

Table 2  Confusion matrix

Ground-truth Prediction

Positive Negative

Positive TP FN
Negative FP TN

Table 3  Models’ performance 
on the test set

Model FLOPs #Params Acc Precision Recall Inference time

AlexNet 1.44G 61.10 M 80.0% 79.0% 81.6% 5 s
ResNet18 1.82G 11.69 M 81.3% 82.3% 85.0% 19 s
DenseNet121 5.76G 7.90 M 86.3% 83.1% 90.0% 18 s
DenseNet161 15.64G 28.69 M 81.0% 75.3% 91.7% 37 s
DenseNet169 6.84G 14.15 M 88.7% 85.1% 95.0% 20 s
DenseNet201 8.74G 20.01 M 83.3% 83.3% 83.3% 24 s



 International Journal of Precision Engineering and Manufacturing

1 3

reconstructed leading edge’s shape differs greatly from that 
of the theoretical part. On the contrary, a qualified recon-
structed leading edge fits more closely with the theoretical 
part.

7  Conclusion

Aiming at the similarity evaluation and classification prob-
lems of the reconstruction of leading edges in the adaptive 
processing of fan blades, we firstly trained a GAN model and 
took its discriminator to discriminate the similarity of recon-
structed leading edges, by which, we built a standard of qual-
ified reconstructed leading edges. After that, four DenseNet 
networks were built to automatically identify the leading 
edge after reconstructing and determine whether it meets the 
processing requirements. The testing result showed that the 
highest accuracy on the test set reached 88.7%. The result 
proves that the proposed method based on neural networks 
is applied to the classification of the leading edge in adap-
tive machining processing successfully. In future work, the 
following issues can be further investigated:

1. The images of the LDEG dataset contain fewer seman-
tic information, which means that their spatial informa-
tion could be lost after multiple convolutional opera-
tions. Considering that our next work is to recognize 
the reconstructed area as an object detection task, how 
to design the architecture and loss function should be 
deeply researched.

2. All images in this work are of their original sizes and we 
did not invest the result after resizing them. The effect 
on our model’s robustness after image resizing is sup-
posed to be further studied.

3. In this paper, we did not take the influence of errors 
during measuring and data registration into considera-
tion such as viewpoint. The development of the error 
compensation algorithm is another focus.
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